THE H^2 CORONA PROBLEM AND $\overline{\partial}_b$ IN WEAKLY PSEUDOCONVEX DOMAINS

MATS ANDERSSON

ABSTRACT. We derive a Bochner-Kodaira-Nakano-Morrey-Kohn-Hörmander type equality in holomorphic vector bundles and obtain L^2 -estimates for $\overline{\partial}_b$ in a pseudoconvex domain that admits a plurisubharmonic C^2 defining function. We combine these with the trick in Wolff's proof of the corona theorem and obtain a H^2 -corona theorem in such a domain.

0. Introduction

Let D be a domain in \mathbb{C}^n and $g_i \in H^{\infty}(D)$ such that

$$(1) \qquad \sum_{i=1}^{k} |g_i|^2 \ge \delta^2 > 0.$$

The problem whether there are $u_j \in H^{\infty}(D)$ such that $\sum_{i=1}^{k} g_i u_i = 1$ is known as the corona problem. The answer is affirmative in e.g. all finitely connected domains in \mathbb{C} , but unknown even in the ball if n > 1. In [11 and 5] are constructed smooth domains in \mathbb{C}^3 and \mathbb{C}^2 which have strictly pseudoconvex boundary in all but one point, but in which the corona theorem fails. However it follows from [13] that in case of two generators, i.e. k = 2, in a strictly pseudoconvex domain there is a solution in BMO.

It is clear that if the corona problem is solvable, then to any $q \in H^2(D)$ there are $u_j \in H^2(D)$ such that $\sum g_j u_j = q$. In this paper we prove such a theorem in a pseudoconvex domain D admitting a C^2 plurisubharmonic defining function ρ , i.e. ρ be of class C^2 in a neighborhood of \overline{D} , $D = \{\rho < 0\}$, $d\rho \neq 0$ on ∂D and $i\partial \overline{\partial} \rho \geq 0$ in D. In particular, the domains in [11 and 5] are of this kind. However, there are examples of pseudoconvex C^2 domains without plurisubharmonic defining function, see [3].

Theorem 1. Suppose D is a pseudoconvex domain in \mathbb{C}^n with a C^2 plurisub-harmonic defining function. Let g be a $j \times k$ -matrix of functions in $H^{\infty}(D)$ such that

$$(2) det gg^* \ge \delta^2 > 0.$$

Received by the editors November 27, 1990 and, in revised form, January 17, 1992. 1991 Mathematics Subject Classification. Primary 32A10, 32A35, 32F15, 32F20. Key words and phrases. Corona theorem, $\overline{\partial}_b$ -equation.

Then to every j-column q of functions in $H^2(D)$ there is a k-column u in $H^2(D)$ such that

$$gu=q$$

and $\|u\|_{H^2} \leq C_{\delta} \|q\|_{H^2}$. If j=1 one can take $C_{\delta} = C_{\epsilon}/\delta^{1+\epsilon+\min(n,k-1)}$ where C_{ϵ} only depends on $\|g\|_{\infty}$, n, k and $\epsilon > 0$.

Note that (2) implies that g is surjective and hence that (3) is pointwise solvable. In fact it is enough to assume that g has constant rank, the product of the nonzero eigenvalues of gg^* are bounded by δ^2 from below and that (3) is pointwise solvable to get the conclusion of Theorem 1, cf. [1].

Since any smooth pluriharmonic χ on \overline{D} has the form $\chi = \log |f|^2$ for some nonvanishing holomorphic f (at least if $H^1(\overline{D}, \mathbb{C}) = 0$), we can apply Theorem 1 to q/f instead of q and obtain a solution to (3) such that

(4)
$$\int_{\partial D} |u|^2 e^{-\chi} \le c_{\delta}^2 \int_{\partial D} |q|^2 e^{-\chi}.$$

If n=1, χ can be freely chosen in (4) and this implies, see [2] or [1], that there is a bounded solution u such that $||u||_{\infty} \le c_{\delta}||q||_{\infty}$ if q is bounded. Hence Theorem 1 is equivalent to the corona theorem in the unit disc.

Theorem 1'. Let D be as in Theorem 1. If q and $g = (g_1, \ldots, g_k)$ in $H^{\infty}(D)$ satisfy

$$|q| < |g|^{1+\varepsilon + \min(n, k-1)},$$

then there is a solution u to (3) in $H^2(D)$ such that

$$\int_{\partial D} |u|^2 e^{-\chi} dS \le C_{\varepsilon} \int_{\partial D} e^{-\chi} dS.$$

Again, for n = 1, this implies that there is a bounded solution if $|q| \le |g|^{2+\varepsilon}$. This also follows from Wolff's proof of the corona theorem, see [7].

Corollary. If $q = q_1q_2$ where q_1 satisfies (5) and $q_2 \in H^2(D)$ is nonvanishing, then there is a solution u to (3) such that

$$\int_{\partial D} |u|^2 dS \le C_{\varepsilon} \int_{\partial D} |q_2|^2 dS.$$

Our proof of Theorem 1 (and 1'), as most proofs of the corona theorem, is based on an estimate of solutions of a $\overline{\partial}_b$ -equation. This approach was first introduced by Hörmander in [10]. Using the Koszul complex one can, in principle, reduce the theorem to systems of (scalar-valued) $\overline{\partial}$ - (or $\overline{\partial}_b$ -) equations, at least if j=1. However, unless n=1 or $k\leq 2$, one has to solve, successively, a sequence of $\overline{\partial}$ -equations (involving forms of higher bidegree) and this seems to lead to considerable difficulties. Instead we reformulate the theorem as a $\overline{\partial}_b$ -problem in a holomorphic vector bundle, following the lines in [12] (but with $\overline{\partial}$ replaced by $\overline{\partial}_b$), in which L^2 -estimates for division problems are treated in a very general setting.

The $\overline{\partial}_b$ -equation is treated by a generalization of a variant due to Berndtsson [2], of the Morrey-Kohn-Hörmander identity (see §3). In [2], this new identity was used to get $L^2(\partial D)$ -estimates for the (scalar-valued) $\overline{\partial}_b$ -equation. Since we

need estimates for $\overline{\partial}_b$ in a vector bundle, our first aim is to generalize to this case. This leads to a $L^2(\partial D)$ -theorem for $\overline{\partial}_b$ in a holomorphic vector bundle over a pseudoconvex domain in a Kähler manifold, see Theorem 2 in §4.

However, in order to prove Theorem 1 (and Theorem 1') we cannot use Theorem 2 directly since it just deals with a size estimate of the right-hand side. One also has to take into account an appropriate estimate of derivatives. This is the trick introduced by Wolff in his proof of the corona theorem, see [7].

The paper is divided into six sections. After some necessary preliminaries in §1, we discuss the $\overline{\partial}_b$ -equation in §2. In §3 we derive the above-mentioned equality and show its connection to the Morrey-Kohn-Hörmander equality as well as the Bochner-Kodaira-Nakano equality. In §4 we prove our L^2 -estimate for $\overline{\partial}_b$ (Theorem 2) and in the remaining two sections we prove Theorem 1 and Theorem 1'.

1. NOTATIONAL PRELIMINARIES

Let X be a Kähler manifold with fundamental form ω , so that $dV = \omega^n/n!$ is the volume measure on X, and let $D = \{ \rho < 0 \}$ be a relatively compact domain in X, where ρ is smooth and $d\rho \neq 0$ on ∂D . We give ∂D the orientation so that a (2n-1)-form α is oriented on ∂D if and only if $d\rho \wedge \alpha$ is oriented on X. Then the surface measure dS on ∂D is given by $dS = d\rho/|d\rho| \perp dV$ on ∂D , where inner multiplication \perp for forms α and β is defined by

$$(1) \qquad \langle \alpha \perp \beta, \gamma \rangle = \langle \beta, \overline{\alpha} \wedge \gamma \rangle.$$

Here \langle , \rangle is the induced inner product for forms, i.e. if * is the complex-linear Hodge star operator, then $\langle \alpha, \beta \rangle dV = *(\alpha \wedge *\overline{\beta})$. Note that $** = (-1)^{p+q}$ on (p, q)-forms (since X has even real dimension) and that $\alpha \perp \beta = *(\alpha \wedge *\beta)$ for any 1-form α . If α is a (2n-1)-form, we have that

(2)
$$\int_{\partial D} \alpha = \int_{\partial D} *(d\rho \wedge \alpha) \, dS/|d\rho|.$$

To see (2), notice that $d\rho \wedge *(d\rho \wedge \alpha) dS/|d\rho| = *(d\rho \wedge \alpha) d\rho \wedge dS/|d\rho| = *(d\rho \wedge \alpha) dV = d\rho \wedge \alpha$, and hence both integrands in (2) are equal, considered as forms on ∂D .

If $E \to X$ is a holomorphic vector bundle over X with hermitian metric $\langle \ , \ \rangle_E$, then we get a metric for ξ , $\eta \in \mathscr{E}_{p,q}(X,E) \ (=\mathscr{E}(X,\Lambda^{p,q}T^*\otimes E)$ i.e. smooth E-valued (p,q)-forms) by putting $\langle \alpha \cdot s \ , \alpha' \cdot s' \rangle = \langle \alpha \ , \alpha' \rangle \langle s \ , s' \rangle_E$ on composite elements. If $s \to s'$ is the conjugate linear mapping from E to its dual bundle E^* , such that $s' \cdot s = \langle s \ , s \rangle_E$, and $\overline{*} : \mathscr{E}_{p,q}(X,E) \to \mathscr{E}_{q,p}(X,E^*)$ by putting $\overline{*}(\alpha \cdot s) = *\overline{\alpha} \cdot s'$ on composite elements, then

(3)
$$\langle \xi, \eta \rangle dV = \xi \wedge \overline{*}\eta, \qquad \xi, \eta \in \mathscr{E}_{p,q}(X, E).$$

Moreover, $\alpha \perp \xi = \overline{*}(\overline{\alpha} \wedge \overline{*}\xi)$, cf. (5), if α is a 1-form and ξ any *E*-valued form.

For ξ , $\eta \in \mathscr{E}_{p,q}(X,E)$, one of which has compact support, we have the inner product

$$(\xi, \eta) = f\langle \xi, \eta \rangle dV = \int \xi \wedge \overline{*} \eta.$$

Let D=D'+D'' denote the Chern connection on E as well as on E^* (with respect to \langle , \rangle_E). Then the formal adjoints $(D')^*$ and $(D'')^*$ are given by $(D'')^* = -\overline{*}D''\overline{*}$, $(D')^* = -\overline{*}D''\overline{*}$.

If s is a holomorphic section to E then $D''(\alpha \cdot s) = (\overline{\partial} \alpha) \cdot s$ and therefore we sometimes write $\overline{\partial}$ instead of D''.

2. The
$$\overline{\partial}_h$$
-equation

Using the notation from §1 we have

Proposition 1. Suppose $\eta \in \mathcal{E}_{p,q+1}(\overline{D}, E)$ and $\xi \in \mathcal{E}_{p,q}(\overline{D}, E)$. Then

(1)
$$\int_{D} \langle D''\xi, \eta \rangle dV - \int_{D} \langle \xi, (D'')^*\eta \rangle dV = \int_{\partial D} \langle \xi, \partial \rho \rfloor \eta \rangle dS / |d\rho|.$$

Remark. Throughout this paper $(D'')^*$ denotes the formal adjoint of D''. When dealing with the D''-Neumann problem $(D'')^*$ is an operator with a specified domain $\mathrm{dom}(D'')^*$. For instance, (1) implies that $\eta \in \mathscr{E}_{p,q}(\overline{D},E)$ is in $\mathrm{dom}(D'')^*$ if and only if $\partial \rho \sqcup \eta|_{\partial D} = 0$.

Sketch of proof. By (1), (3), and (2) in §1 we have that

$$\int_{\partial D} \langle \xi , \partial \rho \perp \eta \rangle \, dS/|d\rho| = \int_{\partial D} *(\overline{\partial} \rho \wedge \xi \wedge \overline{*} \eta) \, dS/|d\rho| = \int_{\partial D} \xi \wedge \overline{*} \eta \,,$$

so by Stokes' theorem and bidegree reasons the right-hand side of (1) equals $\int_D d(\xi \wedge \overline{*}\eta) = (D''\xi, \eta) - (\xi, (D'')^*\eta)$. \square

Let $f \in \mathcal{E}_{n,q+1}(\overline{D}, E)$. We say that an E-valued form (current) u on ∂D solves $\overline{\partial}_h u = f$ if

(2)
$$\int_{\partial D} \langle u, \partial \rho \perp \alpha \rangle dS / |d\rho| = \int_{D} \langle f, \alpha \rangle dV$$

for all $\alpha \in \mathcal{E}_{n,q+1}(\overline{D}, E)$ such that $(D'')^*\alpha = 0$.

Hence, by (1), u must have bidegree (n, q) in the sense that $\alpha \wedge \overline{\partial} \rho$ has bidegree (n, q+1), and $\overline{\partial} f = 0$ (since one can take $\alpha = \overline{*\psi}$ for any $\overline{\partial}$ -closed ψ). Notice that

(3)
$$||u||_{\partial D}^2 = \int_{\partial D} |u \wedge \overline{\partial} \rho|^2 dS / |\partial \rho|_3$$

defines a norm for the space of smooth (n,q)-forms on ∂D , and let $L^2_{n,q}(\partial D, E)$ be its completion with respect to this norm.

Remark. To be more precise, any $u \in \mathcal{E}(\partial D, \Lambda^{n,q}T(X)\otimes E)$ has an orthogonal decomposition $u=u_1+u_2$, where $\overline{\partial}\rho \wedge u_1=0$ and $\overline{\partial}\rho \sqcup u_2=0$. Thus (n,q)-forms (currents) V such that $\partial\rho \sqcup V=0$ can be isometrically identified with intrinsic (n,q)-forms (currents) on ∂D .

Proposition 2. Let $f \in \mathcal{E}_{n,q+1}(\overline{D},E)$ be D"-closed. Then $\overline{\partial}_b u = f$ has a solution in $L^2_{n,q}(\partial D,E)$ with norm C if and only if

(4)
$$\left| \int_{D} \langle f, \alpha \rangle \, dV \right|^{2} \le C^{2} \int_{\partial D} |\partial \rho \, \rfloor \, \alpha|^{2} \, dS / |d\rho|^{2}$$

for all $(D'')^*$ -closed $\alpha \in \mathcal{E}_{n,q+1}(\overline{D}, E)$.

Proof. First suppose there is such a solution u considered as a current such that $\overline{\partial} \rho \wedge u = 0$, cf., the remark above. Then $\int_D \langle f, \alpha \rangle dV = \int_{\partial D} \langle u, \partial \rho \rfloor \alpha \rangle dS/|d\rho|$ so by Schwarz inequality,

$$\left| \int_{D} \langle f, \alpha \rangle \, dV \right|^{2} \leq \int_{\partial D} |u|^{2} \, dS / |d\rho| \int_{\partial D} |\partial \rho \, \rfloor \, \alpha |^{2} \, dS / |d\rho|$$

which implies (4). For the converse, assume that (4) holds. Define the linear functional $\Lambda(\partial \rho \perp \alpha) = \int_D \langle f, \alpha \rangle dV$ on E-valued (n, q)-forms on ∂D of the form $\partial \rho \perp \alpha$ where $(D'')^*\alpha = 0$ in D. By (4) it is well defined and L^2 -bounded, so there is a u such that $\int_{\partial D} |u|^2 / |d\rho| dS \leq C^2$ and (2) holds. \square

In the next paragraph we shall derive an equality which gives a possibility to obtain estimates like (4).

3. A Bochner-Kodaira-Nakano-Morrey-Kohn-Hörmander type equality

In the notation from §1, the Bochner-Kodaira-Nokano identity is

(1)
$$(D'')^*D'' + D''(D'')^* = (D')^*D' + D'(D')^* + i[\Theta, \Lambda]$$

where Λ is inner multiplication with the fundamental form ω , Θ is the curvature tensor on E, i.e. $\Theta = D^2$, and [,] denotes commutator.

If X is compact (so that no boundary terms occur) (1) implies the estimate $\|D''\xi\|^2 + \|(D'')^*\xi\|^2 \ge (i[\Theta, \Lambda]\xi, \xi)$. If $a = i[\Theta, \Lambda]$ happens to be nonnegative on E-valued (p, q)-forms and f is a D''-closed (p, q)-form one gets [also using a local regularity result for the elliptic operator $\overline{\square} = D''(D'')^* + (D'')^*D''$] the estimate

$$\left| \int \langle f, \xi \rangle \, dV \right|^2 \le \int \langle a^{-1}f, f \rangle \, dV \int |(D'')^* \xi|^2 \, dV \quad \text{for all } \xi \in \mathcal{E}_{p,q}(X, E),$$

which means that there is a solution to D''u = f with $||u||^2 \le \int (a^{-1}f, f) dV$, provided the right-hand side is finite.

In a domain D with boundary, one leads to study the D''-Neumann problem and here the starting point is the Morrey-Kohn-Hörmander identity. We will derive it below from (1). To deal with the $\overline{\partial}_b$ -equation on \overline{D} we need still another equality (Proposition 7) first found and used in [2] in the case of (0, 1)-forms (see the remark below) and trivial bundle. This one too will be derived from (1).

We first note how the various geometrical objects are affected if our original metric \langle , \rangle on E is modified.

Proposition 3. If $\langle \ , \ \rangle$ is changed to $\langle \ \rangle e^{-\varphi}$, then by obvious use of the index φ ,

$$(2) (D'')^{*\varphi} = (D'')^* + \partial \varphi \bot,$$

$$D_{\varphi}' = D' - \partial \varphi \wedge,$$

(4)
$$\Theta_{\varphi} = \Theta + \partial \overline{\partial} \varphi ,$$

and

$$(5) (D'_{\varphi})^{*\varphi} = (D')^*.$$

Any of these follows from well-known identities, see e.g. [8], or by simple computations.

Now put $\varphi = t \log(-1/\rho)$ in $D = \{\rho < 0\}$ so that $\exp(-\varphi) = (-\rho)^t$ and $\partial \varphi = O(-1/\rho)$. Also put $(,)_{\varphi} = \int_{D} \langle , \rangle e^{-\varphi} dV$. If t > 2, we can, cf. $(2), \ldots, (5)$, integrate by parts and obtain

$$(6) ||D''\alpha||_{\theta}^{2} + ||(D'')^{*\varphi}\alpha||_{\theta}^{2} = ||D'_{\theta}\alpha||_{\theta}^{2} + ||(D'_{\theta})^{*\varphi}\alpha||_{\theta}^{2} + i([\Theta_{\theta}, \Lambda]\alpha, \alpha)_{\theta}$$

from (1). Our next task is to compute the various terms in (6). We assume that $\alpha \in \mathcal{E}_{n,q}(\overline{D}, E)$ so that $D'_{\varphi}\alpha = 0$ and $[\Theta_{\varphi}, \Lambda]\alpha = \Theta_{\varphi}\Lambda\alpha$. Since, by (2),

$$(D'')^{*\varphi} = (D'')^* + \partial \varphi \perp = (D'')^* - t(\partial \rho/\rho) \perp$$

we get

(7)
$$\|(D'')^{*\varphi}\alpha\|_{\varphi}^{2} = \int_{D} (-\rho)^{t} |(D'')^{*}\alpha|^{2} dV$$

$$+ 2t \operatorname{Re} \int_{D} (-\rho)^{t-1} \langle (D'')^{*}\alpha, \partial \rho \perp \alpha \rangle dV + t^{2} \int_{D} (-\rho)^{t-2} |\partial \rho \perp \alpha|^{2} dV.$$

By (4),

(8)
$$\Theta_{\varphi} = \Theta - t \partial \overline{\partial} \rho / \rho + t \partial \rho \wedge \overline{\partial} \rho / \rho^{2}.$$

We need also

Lemma 4. If $\alpha \in \mathcal{E}_{n,q}(\overline{D}, E)$, then

(9)
$$i\langle \partial \rho \wedge \overline{\partial} \rho \wedge \Lambda \alpha, \alpha \rangle = |\partial \rho \perp \alpha|^2.$$

Lemma 5. If $\psi \in \mathscr{E}(\overline{D})$, then

$$\int_{\mathcal{D}} (-\rho)^{t-1} \psi \, dV \to \int_{\partial \mathcal{D}} \psi \, dS/|d\rho|$$

when $t \setminus 0$.

Taking these for granted for the moment we get from (6), (7), (8) and (9) that

$$\int_{D} (-\rho)^{t} |D''\alpha|^{2} dV + \int_{D} (-\rho)^{t} |(D'')^{*}\alpha|^{2} dV
+ 2t \operatorname{Re} \int_{D} (-\rho)^{t-1} \langle (D'')^{*}\alpha, \partial \rho \sqcup \alpha \rangle dV
+ t^{2} \int_{D} (-\rho)^{t-2} |\partial \rho \sqcup \alpha|^{2} dV
= \int_{D} (-\rho)^{t} |(D')^{*}\alpha|^{2} dV + \int_{D} (-\rho)^{t} i \langle \Theta \Lambda \alpha, \alpha \rangle dV
+ t \int_{D} (-\rho)^{t-1} \langle i \partial \overline{\partial} \rho \wedge \Lambda \alpha, \alpha \rangle dV + t \int_{D} (-\rho)^{t-2} |\partial \rho \sqcup \alpha|^{2} dV$$

for t > 2 and $\alpha \in \mathcal{E}_{n,q}(\overline{D}, E)$.

If we now assume that $D''\alpha = (D'')^*\alpha = 0$, combine the last terms on each side of equality (10) and let $t \setminus 1$ we get

Proposition 6. Suppose $\alpha \in \mathcal{E}_{n,a}(\overline{D}, E)$ and $D''\alpha = (D'')^*\alpha = 0$. Then

(11)
$$i \int_{D} (-\rho) \langle \Theta \Lambda \alpha, \alpha \rangle dV + i \int_{D} \langle \partial \overline{\partial} \rho \Lambda \alpha, \alpha \rangle dV + \int_{D} (-\rho) |(D')^* \alpha|^2 dV = \int_{\partial D} |\partial \rho \perp \alpha|^2 dS / |d\rho|.$$

Remark. Suppose $D \subset \mathbb{C}^n$. If \langle , \rangle is the metric $e^{-\psi}$ on the trivial line bundle (so that $\Theta = \partial \overline{\partial} \psi$) and (n, 1)-forms are identified with (0, 1)-forms in the obvious way, then (11) is exactly Proposition 5 in [2].

In a similar way we can also obtain the Morrey-Kohn-Hörmander identity.

Proposition 7. If $\alpha \in \mathcal{E}_{n,q}(\overline{D}, E)$ and $\partial \rho \perp \alpha|_{\partial D} = 0$, then

(12)
$$\int_{D} |D''\alpha|^{2} dV + \int_{D} |(D'')^{*}\alpha|^{2} dV = \int_{D} |(D')^{*}\alpha|^{2} dV + i \int_{\partial D} \langle \partial \overline{\partial} \rho \Lambda \alpha, \alpha \rangle dS / |d\rho| + i \int_{D} \langle \Theta \Lambda \alpha, \alpha \rangle dV.$$

Proof. By assumption $\partial \rho \perp \alpha = O(-\rho)$ so (12) follows from (10) when $t \searrow 0$. \square

We conclude this paragraph with proofs of the lemmas.

Proof of Lemma 4. Fix a point and (1,0)-forms ω_1,\ldots,ω_n such that $\omega=\sum \omega_j \wedge \overline{\omega}_j$ and $\partial \rho=\omega_1$ at this point. We can write $\alpha=\alpha'+\alpha''=\omega_1 \wedge \overline{\omega}_1 \wedge \gamma+\alpha''$, such that γ and α'' do not contain $\overline{\omega}_1$. Then $\omega_1 \wedge \overline{\omega}_1 \wedge \alpha=\alpha'$ and $\alpha'',\alpha = \alpha'$ and $\alpha'',\alpha = \alpha'$. On the other hand also, $|\omega_1 \perp \alpha|^2 = |\omega_1 \perp \omega_1 \wedge \overline{\omega}_1 \wedge \gamma|^2 = |\omega_1 \wedge \gamma|^2 = |\overline{\omega}_1 \wedge \omega_1 \wedge \gamma|^2 = |\alpha'|^2$ since $\overline{\omega}_1 \wedge \gamma$ does not contain ω_1 . This proves the lemma. \square

Proof of Lemma 5. We may assume that ψ has support in some small neighborhood of a boundary point and we let α be a (2n-1)-form such that $dV = d\rho \wedge \alpha/|d\rho|$ there. Then

$$t \int_{D} (-\rho)^{t-1} \psi \, dV = t \int_{D} (-\rho)^{t-1} d\rho \wedge \psi \alpha / |d\rho|$$

$$= -\int_{D} d(-\rho)^{t} \wedge \psi \alpha / |d\rho| = \int_{D} (-\rho)^{t} \wedge d(\psi \alpha / |d\rho|)$$

$$\to \int_{D} d(\psi \alpha / |d\rho|) = \int_{\partial D} \psi \alpha / |d\rho| = \int_{\partial D} \psi \, dS / |d\rho|$$

where we have used Stokes' theorem twice.

4. A solution of the $\overline{\partial}_b$ -equation

In this paragraph $D = \{ \rho < 0 \}$ is pseudoconvex and ρ is a C^2 plurisub-harmonic defining function. Suppose that the hermitian operator (see [8])

$$A = i(-\rho)\Theta\Lambda + i\partial\overline{\partial}\rho\Lambda$$

is semipositive on E-valued (n, q + 1)-forms, i.e.

$$\langle A\alpha, \alpha \rangle \geq 0, \qquad \alpha \in \mathscr{E}_{n,q+1}(\overline{D}, E).$$

Then Proposition 6 in §3 provides the estimate

$$\int_{D} \langle A\alpha, \alpha \rangle \, dV \le \int_{\partial D} |\partial \rho \, \rfloor \, \alpha|^2 \, dS / |d\rho|$$

for $\alpha \in \mathscr{E}_{p,\,q+1}(\overline{D}\,,\,E)$ such that $D''\alpha = (D'')^*\alpha = 0$. If $f \in \mathscr{E}_{p,\,q+1}(\overline{D}\,,\,E)$ is $\overline{\partial}$ -closed, we thus get

(1)
$$\left| \int_{D} \langle f, \alpha \rangle \, dV \right|^{2} \leq \int_{D} \langle A^{-1} f, f \rangle \, dV \int_{\partial D} |\partial \rho \perp \alpha|^{2} \, dS / |d\rho|$$

for $\alpha \in \mathcal{E}_{p,q+1}(\overline{D}, E)$ such that $D''\alpha = (D'')^*\alpha = 0$. In order to ease the condition that $D''\alpha = 0$ in (1), we first, for simplicity, assume that ∂D is strictly pseudoconvex. Then, $|\alpha|^2 \leq C\langle i\partial\overline{\partial}\rho\Lambda\alpha, \alpha\rangle$, for α such that $\partial\rho \perp \alpha = 0$ on ∂D and since $|\langle\Theta\Lambda\alpha, \alpha\rangle| \leq C|\alpha|^2$ (recall that E is assumed to be a bundle over X) we get from Proposition 7 the Basic Estimate

$$\int_{D} |(D')^* \alpha|^2 \, dV + \int_{\partial D} |\alpha|^2 \, dS$$

$$\leq C \left[\int_{D} |D'' \alpha|^2 \, dV + \int_{D} |(D'')^* \alpha|^2 \, dV + \int_{D} |\alpha|^2 \, dV \right]$$

if $\partial \rho \sqcup \alpha|_{\partial D} = 0$. This ensures, see [6], regularity for the D''-Neumann problem and then any $\alpha \in \mathcal{E}_{n,\,q+1}(\overline{D},\,E)$ has a smooth orthogonal decomposition $\alpha = \alpha' + \alpha''$ where $\overline{\partial}\alpha' = 0$ and α'' is orthogonal to $\overline{\partial}$ -closed E-valued forms. In particular, $(D'')^*\alpha'' = 0$ and $\partial \rho \sqcup \alpha''|_{\partial D} = 0$, cf. the remark after Proposition 1. Thus, if $(D'')^*\alpha = 0$ then $(D'')^*\alpha' = D''\alpha' = 0$ so (1) applies to α' and we hence obtain (1) for α as well. If ∂D is just pseudoconvex, we can still decompose $\alpha = \alpha' + \alpha''$ as before. Since then $\alpha'' \in \mathrm{Dom}(D'')^* \cap \mathrm{Dom}D''$ (in the densely defined operator sense) there are, by Proposition 2.1.1 in [9], $\alpha''_j \in \mathcal{E}_{n,\,q}(\overline{D},\,E) \cap \mathrm{Dom}(D'')^*$ such that $\alpha''_j \to \alpha''$ in graph norm. In particular $\partial \rho \sqcup \alpha''_j|_{\partial D} = 0$. If $\alpha'_j = \alpha - \alpha''_j$, then $\alpha'_j \to \alpha''$ in graph norm and $\partial \rho \sqcup \alpha_{\partial D} = \partial \rho \sqcup \alpha''_j|_{\partial D}$. Since also $(D'')^*\alpha''_j \to 0$, $D''\alpha''_j \to 0$ and $\int \langle f, \alpha'_j \rangle \to \int \langle f, \alpha \rangle$ one can proceed as before, but instead using the variant of (11) in which $(D'')^*\alpha$ and $D''\alpha$ are not supposed to vanish, cf. (10). By Proposition 2 we then have proved

Theorem 2. Let $E \to X$ be a hermitian holomorphic vector bundle over the Kähler manifold X, and let $D = \{ \rho < 0 \}$ be a pseudoconvex relatively compact domain and ρ a C^2 plurisubharmonic defining function. Also suppose that $A = i(-\rho)\Theta\Lambda + i\partial\overline{\partial}\rho\Lambda$ is semipositive on E-valued (n, q+1)-forms. If $f \in \mathscr{E}_{n,q+1}(\overline{D}, E)$ is D''-closed, then there is a solution to $\overline{\partial}_b u = f$ in $L^2_{n,q}(\partial D, E)$ such that

$$\int_{\partial D} |\partial \rho \perp u|^2 dS/|\partial \rho|^3 \le \int_{D} \langle A^{-1} f, f \rangle dV.$$

We recall that a bundle E is called Nakano semipositive if $\langle \Theta \Lambda \alpha, \alpha \rangle \geq 0$ for all $\alpha \in \mathcal{E}_{n,1}(X, E)$.

Corollary. Suppose $E \to X$ is Nakano semipositive, $i\partial \overline{\partial} \rho \geq \delta I$ in D, and ψ is smooth and plurisubharmonic. Then if $f \in \mathcal{E}_{n,1}(\overline{D}, E)$ is $\overline{\partial}$ -closed, there is

a solution u to $\overline{\partial}_b u = f$ such that

(2)
$$\int_{\partial D} |u|^2 e^{-\psi} dS/|d\rho| \leq \frac{1}{\delta} \int_{D} |f|^2 e^{-\psi} dV.$$

In particular, one can let E be the trivial bundle over a domain D in \mathbb{C}^n and thus get (2) for (0, 1)-forms f.

5. THE DIVISION PROBLEM

When proving Theorem 1, we assume that q and g are holomorphic in a neighborhood of \overline{D} . The general case then follows by a normal family argument on the solutions in $D_{\varepsilon} = \{ \rho < -\varepsilon \}$, since it turns out that the occurring constants only depend on derivatives up to second order of ρ near ∂D .

Remark. It is proved in [4] that any C^2 pseudoconvex domain admits a C^2 -defining function ρ such that $-(-\rho)^{\eta}$ is (strictly) plurisubharmonic in D for some $\eta > 0$. Unfortunately, by our method the constants belonging to $D_{\varepsilon} = \{ \rho < -\varepsilon \}$ seem to be unbounded when $\varepsilon \to 0$ so we cannot prove Theorem 1 in this general case. \square

We thus have to consider the following situation. An exact sequence $0 \to S \xrightarrow{j} E \xrightarrow{g} Q \to 0$ of hermitian holomorphic vector bundles over X, such that j and g are holomorphic, S is equipped with the metric induced from E, $|g| \le 1$ and $\det g g^* \ge \delta^2 > 0$. The problem then is if for any holomorphic $q \in \mathscr{E}_{n,0}(\overline{D},Q)$ there is a holomorphic solution $u \in \mathscr{E}_{n,0}(D,S)$ to

$$(1) gu = q$$

such that

(2)
$$\int_{\partial D} |u|^2 dS \le C^2 \int_{\partial D} |q|^2 dS.$$

To find such holomorphic solutions, we proceed as follows. First we note that the pointwise minimal solution $\gamma q = g^*(gg^*)^{-1}q$ satisfies (2). Moreover, $\overline{\partial}(\gamma q) = (\overline{\partial}\gamma)q$ is a $\overline{\partial}$ -closed (n, 1)-form with values in S, since $g\overline{\partial}\gamma q = \overline{\partial}(g\gamma q) = \overline{\partial}q = 0$. The hard step then is to find a $v \in L^2_{n,0}(\partial D, S)$ satisfying (2) such that $\overline{\partial}_b v = (\overline{\partial}\gamma)q$ in S, i.e. such that

(3)
$$\int_{\partial D} \langle v, \partial \rho \rfloor \xi \rangle dS / |d\rho| = \int_{D} \langle (\overline{\partial} \gamma) q, \xi \rangle dV$$

for all $\xi \in \mathcal{E}_{n,1}(\overline{D}, S)$ such that $(D'')_S^* \xi = 0$.

We now claim that (3) implies that actually $\overline{\partial}_b v = (\overline{\partial} \gamma) q$ in E. Taking this for granted for the moment we conclude that $\overline{\partial}_b (\gamma q - v) = 0$ in (the trivial bundle) E which means that $v = \gamma q - v$ satisfies the tangential Cauchy-Riemann equation weakly.

This implies that u is the boundary values of a $U \in H^2(D)$ with norm

$$||U||_{H^2}^2 = \int_{\partial D} |u|^2 dS = \int_{\partial D} |v|^2 dS + \int_{\partial D} |\gamma q|^2 dS$$

(v and γq being orthogonal) and since gU = q on ∂D , it must hold in D.

Thus our problem is solvable if (and only if) we can obtain (3) such that the $L^2(\partial D)$ -norm of v is controlled by $(\int_{\partial D} |q|^2 \, dS)^{1/2}$. By Proposition 2 this amounts to verify the inequality

(4)
$$\left| \int_{D} \langle \overline{\partial} \gamma q, \xi \rangle dV \right|^{2} \leq C_{\delta}^{2} \int_{\partial D} |q|^{2} dS \int_{\partial D} |\partial \rho \perp \xi|^{2} dS / |\partial \rho|^{2}$$

for all $\xi \in \mathcal{E}_{n,1}(\overline{D}, S)$ such that $(D'')^*\xi = 0$.

When trying to prove the estimate (4) one encounters two main difficulties. Firstly, although E and Q are trivial bundles with trivial metrics in our case, S acquires negative curvature which must be taken care of. However, it turns out that the curvature on S becomes nonnegative if the original metric is modified by a factor $e^{-\varphi}$, where φ is a bounded plurisubharmonic function. Since e^{φ} is bounded, it does not affect the estimates in any essential way. Secondly, even if we forget about the curvature problems, i.e. consider the scalar-valued case, an essential difficulty remains. As was mentioned in the introduction, one cannot use Theorem 2 directly since we must use more information about the right-hand side in our $\overline{\partial}_b$ -equation than just a size estimate. Here the Wolff trick comes into play. Restricted to the scalar-valued case, our "Wolff theorem" can be stated

Proposition 8. Suppose $f \in \mathcal{E}_{n,1}(\overline{D})$ is $\overline{\partial}$ -closed, and that there is a bounded plurisubharmonic φ on \overline{D} such that $|\langle f, \alpha \rangle|^2 \leq \langle i \partial \overline{\partial} \varphi \Lambda \alpha, \alpha \rangle$ and

$$\sum_{k=1}^{n} \left| \left\langle \frac{\partial f}{\partial z_{k}}, \alpha \right\rangle \right|^{2} \leq \Delta \varphi \langle i \partial \overline{\partial} \varphi \Lambda \alpha, \alpha \rangle$$

for all (n, 1)-forms α . Then for any holomorphic q there is a solution $v \in L^2_{n,0}(\partial D)$ to $\overline{\partial}_b v = fq$ such that

$$\int_{\partial D} |v|^2 dS \le C^2 \int_{\partial D} |q|^2 dS,$$

where C only depends on $\|\varphi\|_{\infty}$ and D.

This proposition will be proved implicitly in the next paragraph. In the unit disc the assumption in the proposition is essentially, see [2], that $(1-|\zeta|^2)|f|^2$ and $(1-|\zeta|^2)|\partial f/\partial z|$ be Carleson measures, and the conclusion of the proposition implies, cf. the introduction, that there is a bounded solution.

Proof of the claim above. We actually have to verify that if $v \in L^2_{n,0}(\partial D, S)$ and (3) holds for all $\xi \in \mathcal{E}_{n,1}(\overline{D}, S)$ such that $(D'')^*_S \xi = 0$, then it also holds for all $\alpha \in \mathcal{E}_{n,1}(\overline{D}, E)$ such that $(D'')^*_E \alpha = 0$. However, if $p: E \to S$ is the orthogonal projection, then clearly (3) holds for $\xi = \alpha - p\alpha$. Moreover, if $(D'')^*_E \alpha = 0$, then for any compactly supported $\eta \in \mathcal{E}_{n,1}(\overline{D}, S)$,

$$0 = \int_{D} \langle (D'')_{E}^{*} \alpha \,,\, \eta \rangle = \int_{D} \langle \alpha \,,\, \overline{\partial} \, \eta \rangle = \int_{D} \langle p \alpha \,,\, \overline{\partial} \, \eta \rangle = \int_{D} \langle (D'')_{S}^{*} p \alpha \,,\, \eta \rangle \,,$$

so that $(D'')_{S}^{*}p\alpha = 0$. Hence (3) holds for $\alpha = p\alpha + (\alpha - p\alpha)$. \square

6. Proofs of Theorems 1 and 1'

Let β be the element in $\mathscr{E}_{1,\,0}(\overline{D},\,\operatorname{Hom}(S,\,Q))$ such that its adjoint, with respect to the quotient metric on Q, $\beta^*\in\mathscr{E}_{0,\,1}(\overline{D},\,\operatorname{Hom}(Q,\,S))$ equals $-\overline{\partial}\gamma$. Thus our equation to be solved ((3) in §5) becomes $\overline{\partial}_b v = -\beta^* q$. Moreover, since E has no curvature,

$$\Theta_{S} = \beta^* \wedge \beta$$

and since Q has no curvature,

$$(2) -i\langle \beta^* \wedge \beta \Lambda \xi, \xi \rangle \leq r\langle i \partial \overline{\partial} \psi \Lambda \xi, \xi \rangle, \xi \in \mathscr{E}_{n,1}(\overline{D}, S),$$

where $r = \min(n, \operatorname{rank} S)$ and $\psi = \log \det g g^*$ (note that g^* depends on the metric on Q). We also need the estimate

$$|\langle \beta^* q, \xi \rangle|^2 \le -|g^* (gg^*)^{-1} q|^2 i \langle \beta^* \wedge \beta \Lambda \xi, \xi \rangle$$

for $q \in \mathcal{E}_{n,0}(\overline{D}, Q)$ and $\xi \in \mathcal{E}_{n,1}(\overline{D}, S)$. For proofs of (1), (2) and (3) we refer to [12].

Recall (Proposition 6 in §3) that

$$\int_{D} (-\rho) \langle i(\Theta_{S} + \partial \overline{\partial} \varphi) \Lambda \alpha, \alpha \rangle e^{-\varphi} dV + \int_{D} \langle i \partial \overline{\partial} \rho \Lambda \alpha, \alpha \rangle e^{-\varphi} dV$$
$$+ \int_{D} (-\rho) |(D')^{*} \alpha|^{2} e^{-\varphi} dV = \int_{\partial D} |\partial \rho \perp \alpha|^{2} e^{-\varphi} dS / |d\rho|$$

for $\alpha \in \mathcal{E}_{n,1}(\overline{D}, S)$ if $\overline{\partial} \alpha = (D'')^{*\varphi} \alpha = 0$.

Hence if $\varphi = (r + \varepsilon)\psi$ and ρ is plurisubharmonic, we get by (1) and (2)

(4)
$$\int_{D} (-\rho) |(D')^* \alpha|^2 e^{-\varphi} dV \le \int_{\partial D} |\partial \rho \perp \alpha|^2 e^{-\varphi} dS / |d\rho|$$

and

$$(5) \qquad \int_{D} (-\rho) \langle i \partial \overline{\partial} \varphi \Lambda \alpha \,,\, \alpha \rangle e^{-\varphi} \, dV \leq \frac{r+\varepsilon}{r} \int_{\partial D} |\partial \rho \, \, \square \, \, \alpha|^{2} e^{-\varphi} \, dS / |d\rho|.$$

From (3) we also get

(6)
$$|\langle \beta^* q, \xi \rangle|^2 \le |g^* (gg^*)^{-1} q|^2 \frac{r}{r+\varepsilon} \langle i \partial \overline{\partial} \varphi \Lambda \xi, \xi \rangle,$$

for $\xi \in \mathcal{E}_{n,1}(\overline{D}, S)$ and $q \in \mathcal{E}_{n,0}(\overline{D}, Q)$. We now claim that Theorem 1 follows from

Proposition 9. If D and ρ are as in Theorem 1, then

(7)
$$\left| \int_{D} \langle \beta^* q, \xi \rangle dV \right|^2 \le C_{\delta}^2 \int_{\partial D} |q|^2 dS \int_{\partial D} |\partial \rho \perp \xi|^2 e^{\varphi} dS$$

for any holomorphic $q \in \mathcal{E}_{n,0}(\overline{D}, Q)$ and $\xi \in \mathcal{E}_{n,1}(\overline{D}, S)$ such that $(D'')^{*\varphi}(e^{\varphi}\xi) = \overline{\partial}(e^{\varphi}\xi) = 0$.

Here C_{δ} is the constant described in Theorem 1.

Proof of Theorem 1. By the discussion in §5 it is enough to verify (4) in §5 for $\xi \in \mathscr{E}_{n,1}(\overline{D}, S)$ such that $(D'')^*\xi = 0$. Note that

$$(D'')^*\xi=0\quad \text{iff}\quad (D'')^{*\varphi}(e^{\varphi}\xi)=0.$$

Putting $\alpha = e^{\varphi} \xi$, (7) then says that

(8)
$$\left| \int_{D} \langle \beta^* q, \alpha \rangle e^{-\varphi} \, dV \right|^2 \le C_{\delta}^2 \int_{\partial D} |q|^2 \, dS \int_{\partial D} |\partial \rho \, \rfloor \alpha |^2 e^{-\varphi} \, dS$$

for all α such that $\overline{\partial}\alpha=(D'')^{*\varphi}\alpha=0$. As in §4, we can obtain (8) for all α with $(D'')^{*\varphi}\alpha=0$. But this means that (7) holds for all ξ with $(D'')^{*\xi}=0$. Finally $e^{\varphi}=(\det gg^*)^{r+\varepsilon}\leq 1$ by assumption, and hence we have verified (4) in §5. \square

Proof of Proposition 9. We consider g as a $j \times k$ -matrix of holomorphic functions on \overline{D} and use the norms

$$||g||^2 = \sum_{\tau \nu} |g_{\tau \nu}|^2, \quad |g'|^2 = \sum_{i\tau \nu} |\partial g_{\tau \nu}/\partial \zeta_i|^2.$$

The assumptions on g imply that

(9)
$$|(gg^*)^{-1}| \lesssim 1/\delta^2, |g^*(gg^*)^{-1}q|^2 \lesssim (1/\delta^2)|q|^2.$$

If Δ is the \mathbb{R}^{2n} -Laplacian, then

$$(10) |g'|^2/|g|^{2-2\varepsilon} \le C_{\varepsilon} \Delta |g|^{2\varepsilon}, \varepsilon > 0$$

We also need the inequalities

(11)
$$\int_{D} (-\rho)|f'|^2 dV \lesssim \int_{\partial D} |f|^2 dS$$

and

(12)
$$\int_{D} (-\rho)|f|^{2} \Delta \psi e^{\psi} dV \lesssim \int_{\partial D} |f|^{2} e^{\psi} dS$$

for holomorphic f and subharmonic ψ . They follow from Green's formula. Recall that $-\beta^* = \overline{\partial} \gamma = \overline{\partial} [g(gg^*)^{-1}]$ so that, for an S-valued ξ ,

$$-\langle \boldsymbol{\beta}^* \boldsymbol{q}, \boldsymbol{\xi} \rangle = \langle (\partial \boldsymbol{g})^* (\boldsymbol{g} \boldsymbol{g}^*)^{-1} \boldsymbol{q}, \boldsymbol{\xi} \rangle.$$

We have to estimate

$$I = \int_{D} \langle \beta^* q, \xi \rangle d\lambda, (D'')^{*\varphi} (e^{\varphi} \xi) = \overline{\partial} (e^{\varphi} \xi) = 0.$$

Let χ be a smooth function which is identically 1 near ∂D and such that $\partial \rho$ is nonvanishing on its support. If $L = \chi |\partial \rho|^{-2} \sum_{1}^{n} (\partial \rho / \partial \overline{\zeta}_{j}) \partial / \partial \zeta_{j}$, then we can write

$$I = \int_{D} (1 - \chi) \langle \beta^* q, \xi \rangle dV - \int_{D} L(-\rho) \langle \beta^* q, \xi \rangle dV,$$

and an integration by parts in the second integral gives us

$$\begin{split} I &= \int_{D} (1-\chi) \langle \beta^* q \,,\, \xi \rangle \, dV + \int_{D} (-\rho) O(1) \langle \beta^* q \,,\, \xi \rangle \, dV \\ &+ \int_{D} (-\rho) \langle (L\beta^*) q \,,\, \xi \rangle dV + \int_{D} (-\rho) \langle \beta^* L q \,,\, \xi \rangle \, dV \\ &+ \int_{D} (-\rho) \langle \beta^* q \,,\, (\overline{L}\varphi) \xi + \overline{L} \xi \rangle \, dV - \int_{D} (-\rho) \langle \beta^* q \,,\, \overline{L}\varphi \xi \rangle \, dV \\ &= I_0 + I_1 + I_2 + I_3 + I_4 + I_5 \end{split}$$

where O(1) only depends on derivatives up to second order of ρ and χ , and where $\varphi = (r + \varepsilon) \log \det g g^*$. The proof is concluded by estimating each I_i . By (6) and Schwarz inequality we have that, for i = 0, 1,

$$|I_i|^2 \lesssim \int_D (-\rho)|g^*(gg^*)^{-1}q|^2 e^{-\varphi} dV \int_D (-\rho)\langle i\partial \overline{\partial} \varphi \Lambda \xi, \xi \rangle e^{\varphi} dV.$$

Now, cf. (9),

$$\begin{split} \int_D (-\rho) |g^*(gg^*)^{-1}q|^2 e^{-\varphi} \, dV &\lesssim \frac{1}{\delta^2 \delta^{2(r+\varepsilon)}} \int_D (-\rho) |q|^2 \, dV \\ &\lesssim \left(\frac{1}{\delta^{1+r+\varepsilon}}\right)^2 \int_{\partial D} |q|^2 \, dS \end{split}$$

since q is holomorphic (cf. (12) with e.g. $\psi = |\zeta|^2$). Also

$$\int_{D} (-\rho) \langle i \partial \overline{\partial} \varphi \Lambda \xi , \xi \rangle e^{\varphi} \, dV = \int_{D} (-\rho) \langle i \partial \overline{\partial} \varphi \Lambda (e^{\varphi} \xi) , e^{\varphi} \xi \rangle e^{-\varphi} \, dV$$

and hence by (5), $\lesssim \int_{\partial D} |\partial \rho \perp \xi|^2 e^{\varphi} dS$. Thus we have obtained the required estimate for I_0 and I_1 . To handle I_2 , first note that

$$-\langle (L\beta^*)q, \xi \rangle = \langle (\partial g)^* (gg^*)^{-1} (Lg)g^* (gg^*)^{-1}q, \xi \rangle$$
$$= \langle \beta^* (Lg)g^* (gg^*)^{-1}q, \xi \rangle$$

so by (6) and (9),

$$\begin{split} |\langle (L\beta^*)q\,,\,\xi\rangle|^2 &\leq |g^*(gg^*)^{-1}(Lg)g^*(gg^*)^{-1}q|^2e^{-\varphi}\langle i\partial\overline{\partial}\varphi\Lambda\xi\,,\,\xi\rangle e^{\varphi}\\ &\lesssim \frac{1}{\delta^2\delta^{2(r+\varepsilon)}\delta^{2\varepsilon}}\frac{|g'|^2}{(\det gg^*)^{1-\varepsilon}}|q|^2\langle i\partial\overline{\partial}\varphi\Lambda\xi\,,\,\xi\rangle e^{\varphi}. \end{split}$$

If g is a row matrix, i.e. j = 1, then $\det g g^* = |g|^2$ so we can use (10) and get

$$\begin{split} |\mathbf{I}_{2}|^{2} &\leq \left(\frac{1}{\delta^{1+r+2\varepsilon}}\right)^{2} \int_{D} (-\rho)|q|^{2} \Delta |g|^{2\varepsilon} e^{|g|^{2\varepsilon}} \int_{D} (-\rho) \langle i \partial \overline{\partial} \varphi \Lambda \xi, \xi \rangle e^{\varphi} \\ &\lesssim \left(\frac{1}{\delta^{1+r+2\varepsilon}}\right)^{2} \int_{\partial D} |q|^{2} dS \int_{\partial D} |\partial \rho \perp \xi|^{2} e^{\varphi} dS. \end{split}$$

If j > 1 we estimate $1/\det gg^*$ by $1/\delta^2$ and use the simpler inequality $|g'|^2 \le \Delta |g|^2$. For simplicity we assume for the rest of the proof that j = 1. To handle I_3 , we note that

$$|\langle \beta^* L q \,,\, \xi \rangle|^2 \lesssim \left(\frac{1}{\delta^{1+r+\varepsilon}}\right)^2 |q'|^2 \langle i \partial \overline{\partial} \varphi \Lambda \xi \,,\, \xi \rangle e^{\varphi}$$

and here the first factor is treated by (11) and the second one as before. Further, we have

$$\begin{split} |\mathbf{I}_4|^2 &\lesssim \int_D (-\rho) |\beta^* q|^2 e^{-\varphi} \, dV \int_D (-\rho) |(\overline{L}\varphi)\xi + \overline{L}\xi|^2 e^{\varphi} \, dV \\ &\lesssim \left(\frac{1}{\delta^{1+r+2\varepsilon}}\right)^2 \int_D (-\rho) \frac{|g'|^2}{|g|^{2-2\varepsilon}} |q|^2 \, dV \int_D (-\rho) |\overline{L}(e^{\varphi}\xi)|^2 e^{-\varphi} \, dV. \end{split}$$

The first factor is handled as before and the second one is estimated by (4). Finally,

$$|I_5|^2 \lesssim \left(\frac{1}{\delta^{1+r+\varepsilon}}\right)^2 \int_D (-\rho) |\overline{L}\varphi|^2 |q|^2 dV \int_D (-\rho) \langle i\partial \overline{\partial} \varphi \Lambda \xi, \xi \rangle e^{\varphi} dV.$$

Note that $|\overline{L}\varphi|^2 \le |g'|^2/|g|^2$ so that the first factor is dominated by

$$\frac{1}{\delta^{2\varepsilon}} \int_{D} (-\rho) (\Delta |g|^{2\varepsilon}) |q|^2 e^{|g|^{2\varepsilon}} dV \lesssim \frac{1}{\delta^{2\varepsilon}} \int_{\partial D} |q|^2 dS$$

and hence the proposition is proved. \Box

Proof of Theorem 1'. It is enough to show that

$$\left| \int_{D} \langle \beta^* q, \xi \rangle \, dV \right|^2 \le C_{\varepsilon} \int_{\partial D} e^{-\chi} \, dS \int_{\partial D} |\partial \rho \perp \xi|^2 e^{\varphi + \chi}$$

for all ξ such that $(D'')^{*\psi}(e^{\psi}\xi) = \overline{\partial}(e^{\psi}\xi) = 0$, where we have put $\psi = \varphi + \chi = (r + \varepsilon')\log|g|^2 + \chi$ and ε' is less than the ε in the hypothesis of Theorem 1'.

Then most arguments when estimating the left-hand side work as before. We have just two new difficulties. For the term I_3 we have

$$|\mathbf{I}_3|^2 \lesssim \int_D (-\rho) |Lq|^2 / |g|^{2(1+r+\varepsilon')} e^{-\chi} \int_D (-\rho) \langle i \partial \overline{\partial} \psi \Lambda \xi, \xi \rangle e^{\psi}.$$

Since $|g|^{2(1+r+\epsilon)} > |g|^2$, $|g|^{2(1+r+\epsilon')} > |g|^{2-\epsilon''}$ and hence the first factor is

$$\begin{split} &\lesssim \int_D (-\rho) \Delta |q|^{\varepsilon''} e^{-\chi} \leq \int_D (-\rho) \Delta (|q|^{2''} - \chi) e^{|q|^{\varepsilon'' - \chi}} \\ &\lesssim \int_{\partial D} e^{|q|^{\varepsilon'' - \chi}} dS \lesssim \int_{\partial D} e^{-\chi} dS. \end{split}$$

When estimating I₅ we show up with a factor

$$\begin{split} \int_{D} (-\rho)|q|^{2}|\nabla\psi|^{2}e^{-\psi} &\leq \int_{D} (-\rho)|g|^{\varepsilon''}|\nabla\psi|^{2}e^{-\chi} \\ &\lesssim \int_{D} (-\rho)|g|^{\varepsilon''}|\nabla(\log|g|^{2})|^{2}e^{-\chi} + \int_{D} (-\rho)|\nabla\chi|^{2}e^{-\chi} = a_{1} + a_{2}. \end{split}$$

But

$$a_1 \lesssim \int_{D} (-\rho) \Delta(|g|^{\varepsilon''} - \chi) e^{|g|^{\varepsilon''} - \chi} \lesssim \int_{\partial D} e^{-\chi}$$

and so is a_2 . This concludes the proof of Theorem 1'. \square

REFERENCES

- 1. M. Andersson, The corona theorem for matrices, Math. Z. 201 (1989), 121-130.
- 2. B. Berndtsson, $\bar{\partial}_b$ and Carleson inequalities, Complex Analysis. II, (Univ. of Maryland, 1985-86), Lecture Notes in Math., vol. 1276, Springer, 1987, pp. 42-54.
- 3. K. Diedrich and J. E. Fornaess, *Pseudoconvex domains: An example with nontrivial nebenhuelle*, Math. Ann. 225 (1977), 275-292.
- Pseudoconvex domains: Bounded strictly plurisubharmonic exhaustion functions, Invent. Math. 39 (1977), 129-141.
- 5. J. E. Fornaess and N. Sibony, Smooth pseudoconvex domains in \mathbb{C}^2 for which the corona theorem and L^p estimates for $\overline{\partial}$ fail, preprint 1991.

- G. B. Folland and J. J. Kohn, The Neumann problem for the Cauchy-Riemann complex, Princeton Univ. Press, 1972.
- 7. T. W. Gamelin, Wolff's proof of the corona theorem, Israel J. Math. 37 (1980), 113-119.
- 8. P. A. Griffiths and J. Harris, *Principles of algeraic geometry*, Wiley-Interscience, New York, 1978.
- 9. L. Hörmander, L^2 estimates and existence theorems for the $\overline{\partial}$ operator, Acta Math. 113 (1965), 89-152.
- 10. _____, Generators for some rings of analytic functions, Bull. Amer. Math. Soc. 73 (1967), 943-949.
- 11. N. Sibony, Problème de la courenne pour les domaines faiblement pseudoconvexes à bord lisse, Ann. of Math. 126 (1987), 675-682.
- 12. H. Skoda, Morphismes surjectifs de fibres vectoriels semi-positifs, Ann. Sci. Ecole Norm. Sup. 11 (1978), 577-611.
- 13. N. Th. Varopoulos, *BMO functions and the* $\overline{\partial}$ -equation, Pacific J. Math. 71 (1977), 221–273.

Department of Mathematics, Chalmers University of Technology and The University of Goteborg, S-412 96 Goteborg, Sweden

E-mail address: matsa@math.chalmers.se